

MetAGEAR

Integrated framework for industrial gearbox design & manufacturing OVERVIEW

Francesco Pellicano Principal Investigator

Dept. of Engineering Enzo Ferrari Università di Modena e Reggio Emilia.

Francesco Pellicano

Mech Mo.Re. Mech

The origins

- 2004 Gear Design Project with CNH SpA: Nonlinear Parametric FEA
- 2005 Simech: Gear dynamic models
- 2007 Helical-pair project with CNH SpA: New Nonlinear Parametric FEA, Test-Rig
- 2010 Intermech: Gearboxes optimization
- 2013 INDGEAR project: Condition Monitoring, Diagnostics, Prognostic
- 2014 FORTISSIMO project: Supercomputing applications
- 2016 MetAGEAR project with Bonfiglioli SpA and SIR SpA:
 - Technologies for gearboxes
 - Design, Simulation, Testing, Materials, Production

Over 10 years research on gears, gearboxes and the like Undergraduate, Graduate and PhD students specialized on gears

Francesco Pellicano

3D Tolerance design

- Methodological approach for the 3D tolerance analysis in gearboxes
 - Dimensional, geometric and general tolerances
 - Functional analysis of the assembly
 - Identification of the main contributors to the 3D tolerance stack
- Methodological approach for the synthesis of tolerances :
 - Definition of a Datum Reference Frame
 - Allocation of tolerances on functional dimensions and geometrical features
 - Knowledge-based approach
 - Revision of the dimensional and tolerances values in accordance with the results of tolerance simulations

Francesco Pellicano

MechLav

SIMULATION

Nonlinear Modelling

- Nonlinear FEA (Commercial and in-house software)
- Lumped parameters modelling
- Loaded Tooth Contact Analysis
- Misalignments
- Dynamic loads
- Linear and nonlinear resonances

Optimization

- Simple and complex gear-trains
- Micro-geometry optimization
- Static and dynamic optmization

InterMech Mo.Re.

MechLav 🍈

SIMULATION

NVH optimization of gearboxes

- Parametric LP model of gearboxes
- Gear vibration/variable forces on bearings and casing
- Parametric FE model of gearboxes
- Natural frequency of casing/ casing vibration
- BE model of gearboxes
- Acoustic radiation
- Sound Quality Analysis of gearboxes
- acoustic comfort/metrics

TESTING

Test Rig

- Test rig for single pair analysis
 - » variable centerdistance
 - » controlled misalignments
 - » computerized speed/torque control
- Sensors: torque-meters, strain-gauges, accelerometers
- Testing program
 - Efficiency direct measurement
 - Vibration and sound measurement
 - Endurance accelerated test
 - » special gear design for high contact pressure
- Goal
 - Final assessment on materials, coatings, surface treatments

Francesco Pellicano

1500

Frequency [Hz]

2000

2500

3000

1000

MATERIALS

THERMOCHEMICAL TREATMENTS

- LOW PRESSURE CARBURIZING
- ZeroFlow[®] GAS NITRIDING

FILM DEPOSITION

- Physical Vapour Deposition (PVD)
- Plasma Enhanced Chemical Vapour Deposition (PECVD)

QUALITY CHECK: HARDNESS AND ROUGHNESS

- **TRIBOLOGICAL TEST**
- PARAMETER SELECTION
- Stribeck curve
- pin-on-disk set up

Francesco Pellicano

Forever Forward

HV_{0.1}

High accuracy and reconfigurability robotic system

New architecture of reconfigurable robotic assembly cells:

 Different control architecture needed to improve and re-adapt existing plants, and to develop high reconfigurable robotic cells: PC based and Structured Text instead of PLC & AVL

Operating modules and their behavioral models, product configuration, tests:

- Identified the case study and variances for robotized assembly
- re-adapting robotic assembly democell
- analysing case study for preliminary assembly simulation tests

MechLav 🛞

UNIONE EUROPEA

SIMULATION

TESTING

PRODUCTION

