

RegioneEmilia-Romagna

May 24th 2018

Planetary gear modelling/optimization; Experiments on coated gears

Marco Barbieri, Giovanni Iarriccio, Asma Masoumi, Francesco Pellicano, Farhad Samani, Antonio Zippo

Vibration and powertrain lab. Università di Modena e Reggio Emilia - Centro InterMech MO.RE.

Regione Emilia-Romagna

Planetary gear modelling/ optimization

Planetary gear modelling

- The goal was to find optimal profile modifications in order to reduce the overall vibration (Gear day 2017)
- Dynamic behavior of planetary gear can be modeled using lumped parameter model
- * Tip and root relief on sun and planets are considered (no modifications on the ring)
- * The model includes:
 - * FE evaluated stiffnesses of gear pairs
 - Backlash in the contacts
 - Geometric errors due top profile modifications
 - Bearing stiffness

Optimization of profile reliefs

- Optimization parameters:
 - Sun profile reliefs (tip and root)
 - Planet profile reliefs (tip and root)
- Objective function:
 - Peak to peak of the STE of the planetary gear
- * No modifications on ring

Pinion				Gear			
α _{ts} 11 bits	^{mag} t 6 bits	α _{rs} 11 bits	^{mag} r 6 bits	α _{ts} 11 bits	mag _t 6 bits	α _{rs} 11 bits	^{mag} r 6 bits
0110	01						01

Planetary gear optimisation

* Optimization (Genetic Algorithms) of the overall Static Transmission Error STE allows for reducing the Dynamic Transmission Error DTE at each mesh frequency

- In a system having four or more planets, static load imbalance occurs
- Load sharing coefficient is a measure of the average force on the i-th planet

$$L_i = \frac{\frac{1}{T_m} \int_0^{T_m} F_i(t) dt}{\frac{M_1}{R_1}}$$

 The dynamic model can be adapted in order to evaluate the load sharing coefficient

Numerical analysis

 Dynamic load-sharing sensitivity to errors which could provide references for designing planetary gears and load balancing.

The main sources of imbalance are:

- Carrier pinhole position error (the most significant)
- Planet size variation
- Run-out errors of the gears

Case study:

- 2D spur planetary gearbox with N equally spaced planets
- Nonlinear model with time varying mesh stiffnesses and backlash
- 200 micron positioning error of 2nd planet in tangential direction

Angular position of the n-th planet

$$\hat{\psi}_n = \psi_n + a \tan(\frac{e_t}{e_r + cd}) \quad \psi_n + \frac{e_t}{e_r + cd}$$

Center distance

$$c\hat{d} = \sqrt{(cd + e_r)^2 + e_t^2}$$

Pressure angle $\hat{\alpha}_{s/r} = a \cos(\frac{r_{bs} \pm r_{bn}}{c\hat{d}})$

- * $\hat{\psi}_n, c\hat{d}, \hat{\alpha}_{s/r}$ are to be modified accordingly to the presence of errors
- Planet pin positioning errors are the more relevant

- * 200 µm error planet 2
- LS evaluation is performed for system with more planets

3 equally spaced planets									
Load sharing factor	Planet1	Planet2	Planet3						
Load-sharing (sun- planet)	0.3436	0.3128	0.3436						
4 equally spaced planets									
Load sharing factor	Planet1	Planet2	Planet3	Planet4					
Load-sharing (sun- planet)	0.2634	0.1476	0.2682	0.3208					

Load Sharing: next steps

- * Further developments include:
 - An experimental validation of the proposed method, which can be performed by means of strain-gauges measurements
 - Optimization of planet phasing in order to reduce the AGMA mesh load factor Kγ

RegioneEmilia-Romagna

Experiments on coated gears

Test rig for coatings/treatments on gears

 A test rig for gear pair dynamic measurement (courtesy of CNH) has been used for an experimental campaign

Test planning

1-3	tempered	1	1
4-6	tempered	coating 1	1
7-9	tempered	coating 2	/
10-11	tempered	1	1
12-14	carburized	1	/
15-17	carburized	coating 1	/
18-20	carburized	coating 2	/
21-23	carburized	1	texturing 1
24-26	carburized	1	texturing 2
27-29	nitrided	1	/
30-32	nitrided	coating 1	/
33-35	nitrided	coating 2	/

- Gears with three kinds of thermal treatment are considered
- For each thermal treatment, two different kinds of Tungsten Carbide/Carbon (WC/C)
 coatings and the uncoated case are investigated
- Some gears have been left for surface texturing (to be tested)
- An equivalent set of tribometer disks have been produced (using the same steel)

Test planning

<u>Gear test</u>

- Rolling/sliding contact
- * Max pressure: 1.5 GPa (pure rolling)
- * Max sliding speed: 2 m/s @ 0.8 Gpa
- * Oil jet lubrication: Shell OMALA VG 68 (mineral)
- * Efficiency curves will be measured

Ball on disk tribometer

- Sliding contact
- * Max pressure: 0.8 GPa
- Max sliding speed: 1.5 m/s
- Stribeck curves will be measured
- Dip lubrication: VG 68 LT or VG 150 HT
- Pure sliding will result in less hydrodynamic lift

Gear sample design

- Spur gear z=62, m=2mm, 1:1 ratio
- Gears and tribometer disks are made using 20MnCr5 steel (suitable both for carburizing and nitriding)
- Thermal treatments are applied
- Both gears and disks are grinded (large crowning, 100µm)
- Tumble finish is applied to both (Ra=0.2µm)
- * WCC coatings are performed

Load conditions

Dynamic measurements

- * Acceleration and torque signals are acquired simultaneously
- * DTE is computed combining 4 acceleration signals

$$DTE = \frac{\ddot{x}_{11} + \ddot{x}_{12}}{2} \frac{R_{b1}}{R_{c1}} - \frac{\ddot{x}_{21} + \ddot{x}_{22}}{2} \frac{R_{b2}}{R_{c2}}$$

Dynamic measurements

- * 61 mesh frequencies (144-2736 RPM at pinion)
- * Each speed lasts for 40 s (10 s acquisition)
- * Efficiency is evaluated thanks to the torquemeters
- * All gears are carburized

Efficiency 150 Nm

* Coating 1 and Coating 2 + Carburized are more efficient at the nominal torque

* At low speed Coating 2 and Coating 2 + Carburized are the most efficient

Efficiency 50 Nm

 Coating 1 and Coating 2 + Carburized are as much efficient as uncoated

Coating 2 failure

- * Coating 2 failure occurs at 150 Nm
- * WCC delamination is found close to the tip and root (failure mode: friction, low pressure)

* Coating 1 and Coating 1 + Carburized are reliable up to 200 Nm

* As expected, efficiency increases with torque (churning losses are less relevant)

Coating 2 reduces vibrations in the gear pair, while coating 1 increases vibration levels
Coating 1 + Carburized is the most noisy test case

Conclusions

- A comparative test for gear coatings and treatments has been setup
- Tested WCC show slight efficiency increase with respect to uncoated cases
- * Efficiency increase generally produces larger vibration amplitudes
- * Optimal efficiency is given by a combination of coating 1 and uncoated pair (coating 2 delaminates at 1.5 GPa)
- In the final part of the project, the role of superfinishing is going to be investigated (as well as surface texturing)

RegioneEmilia-Romagna

May 24th 2018

Planetary gear modelling/optimization; Experiments on coated gears

Marco Barbieri, Giovanni Iarriccio, Asma Masoumi, Francesco Pellicano, Farhad Samani, Antonio Zippo

Vibration and powertrain lab. Università di Modena e Reggio Emilia - Centro InterMech MO.RE.

