

RegioneEmilia-Romagna

The Gear Day 2017

MetAGEAR

Integrated framework for industrial gearbox design & manufacturing

A project within POR-FESR 2014-20

A bit of history...

- * 2005 Simech project: "UOR 1.2 Gear transmission"
- * 2010 Intermech project: "UOR 1.2 Gearboxes optimization"
- * 2016 MetAGEAR project: fully focused on gears (1M€)
 - * 10 years research experience on gears
 - multidisciplinary approach (thanks to our colleagues in Modena and Ferrara)
 - experimental facilities are available (thanks to the previous projects)

Piazza XXIV Ma

Who is involved?

* Intermech MO.RE.

- * Gear design & optimization Prof. Francesco Pellicano
- * Archetypal design Prof. Francesco Leali
- * Material science Prof. Tiziano Manfredini
- * Manufacturing Prof. Marcello Pellicciari
- * MechLav
 - * NVH optimization Prof. Giorgio Dal Piaz
- * Democenter
 - * Dissemination

Industrial partners:

Via Vincenzo

Laboratorio per la Meccanica Avanzata

MetAGEAR goals

- In Italy a large number of gear manufacturers is present, but there is not a large research center on gears (handicap with respect to Germany)
- MetAGEAR aims to collect skills and facilities shared by the two laboratories Intermech and Mechlav to create a large framework for performing applied research on gears in Italy
- In our vision, MetAGEAR will provide new innovation opportunities and service for Italian gear manufacturers

OR1 - Gear design, simulation and testing Prof. Francesco Pellicano

OBJECTIVES

- Developing a software for analysis and optimization of gearboxes starting from design parameters and material properties
- Developing a test rig for experimental validation of models, and for assessment of optimal gear design solutions

ACTIVITIES

- Modelling static and dynamic behavior of gearboxes taking into account for new materials and coatings
- Validations by experiments (with accelerometers / strain gauges)
- * The new test rig will be highly flexible / reconfigurable for:
 - model validation;
 - checking the effectiveness of new solutions (e.g. new materials/coatings/treatments OR3);
 - testing for industrial partners (service)

OR1 - Gear design, simulation and testing Prof. Francesco Leali

OBJECTIVES

- * Integrated method to consider geometrical product specification in a 3D environment.
- Dimensioning and tolerancing method directly applied to 3D CAD models
- Description of a FE based simulation method for machining
- Innovative design method for fixture systems

OR1 - Gear design, simulation and testing Prof. Francesco Leali

- Tridimensional approach Variational model
- * Monte Carlo Analysis method
- Integrated on the design environment
- * Implemented in the early design phases
- * Identification of the contributors
- Simulation of assembly process point-based
- * Fixture system modeling

OBJECTIVES

- * Developing a software instrument for **optimizing NVH** (Noise Vibration and Harshness) behavior of gearboxes
- * Useful framework for gear design
- * Developing a **suite of virtual instruments** to assess vibration and noise level in operating conditions
- * Integration of models:
 - * Lumped parameters LP
 - Finite elements FE
 - * Boundary elements BE
- * Psycho-acoustic models and sound quality measurements
- Statistical modelling of tolerances and their effect on vibration and noise

EXPECTED RESULTS

- * Tolerance estimate
- * Reduced time to market
- * Lower vibration and better sound quality

MechLav

OR2 - NVH optimization of gearboxes Prof. Giorgio Dal Piaz

MechLav 🏈

OR2 - NVH optimization of gearboxes Prof. Giorgio Dal Piaz

Driving

FACILITIES

- Anechoic and hemi-anechoic chamber (50 Hz cut-off frequency)
- Complete instrumentation for acoustic and vibration measurements and modal analysis
- Test bench for rotating components (gears, bearings, joints)
- 3-Axis Electro-Dynamic Vibration System
- Contactless sensors: Laser Doppler vibrometers, Microflown
- * Software MB, FEM, BEM, psycoacoustic for simulation and optimization

MechLav

OR3 - Surface coatings and treatments for gears

Prof. Tiziano Manfredini

OBJECTIVES

- Developing/optimizing thermochemical treatments and tempering for optimal tribological performance
- Developing/optimizing Physical Vapor Deposition (PVD) and Plasma Enhanced CVD films to increase wear resistance and to reduce friction

- * **Surface patterning** to enhance tribological behavior
- * Developing **polymeric reinforced materials** for optimal tribo-mechanical performance

OR3 - Surface coatings and treatments for gears Prof. Tiziano Manfredini

ACTIVITIES

- * Use of special steel "precipitation hardening" for gears: inox steel reinforced by means of precipitation hardening
- Unconventional nitriding/carburizing/ tempering to increase surface hardness (without reducing oxidation protection)
- * Micro/nano reinforced polymers for reducing mass, costs and vibrations

10% Portland cement (low cost reinforced polymeric material)

> J Polym Eng 2014; 34(8): 775–786

OR3 - Surface coatings and treatments for gears Prof. Sergio Valeri

ACTIVITIES

- Surface patterning reduces the coefficient of friction 4 times when lubricant is present
- Friction coefficient is low even for low values of the Stribeck parameter

OR4 - Reconfigurable Manufacturing Systems for gearboxes Prof. Marcello Pellicciari

CHALLENGE

 Gearboxes demand for careful and precise assembly; assembly should be automated to ensure optimal process control and efficiency

OBJECTIVES

- Automated assembly of gearboxes by means of force feedback
- Optimal process precision and quality (customized and flexible)

PARTNERS

- * Intermech Mo.Re.
- * SIR S.p.A.
- * Bonfiglioli S.p.A.

OR4 - Reconfigurable Manufacturing Systems for gearboxes Prof. Marcello Pellicciari

ACTIVITIES

- * "Zero-defect" automatic assembly by force feedback
- New generation of robotic cells, scalable and reconfigurable
- "One-piece-flow" production in a large product mix
- Process analysis and data management to monitor production quality (smart factory)

RegioneEmilia-Romagna

The Gear Day 2017

MetAGEAR

Integrated framework for industrial gearbox design & manufacturing

A project within POR-FESR 2014-20

