

Programma operativo regionale Fondo europeo di sviluppo regionale

RegioneEmilia-Romagna

May 5th 2017

Gear modelling and optimization; experimental validation

Marco Barbieri, Asma Masoumi, Francesco Pellicano, Matteo Strozzi, Antonio Zippo

Vibration and powertrain lab. Università di Modena e Reggio Emilia - Centro InterMech MO.RE.

Programma operativo regionale Fondo europeo di sviluppo regionale

WP1 - Gear design, simulation and testing

MetAGEAR

OR1 - Gear design, simulation and testing

MAIN TASKS:

- 1.Developing a software for analysis and optimization of gearboxes starting from design parameters and material properties
- 2.Developing a **test rig** for experimental validation of models, and for assessment of optimal gear design solutions

Task 1: Modelling/optimizing planetary gears

- Static analyses can be carried out using Finite Element models
- Dynamic behavior of planetary gear can be modeled using lumped parameter model

Optimizing planetary gears

- The goal is to optimize profile reliefs in order to reduce
 overall planetary gear
 vibrations
- Static FE and lumped parameter models are combined in order to get a fast and reliable optimum
- A static model of the whole system is used to validate the proposed approach

Dynamic model of a planetary gear with modifications

- * The first step is modeling both meshes by FEM, using our software HPGA
- * Later on, rigid rotations due to profile modifications are taken into account

Computing mesh stiffness with HPGA

* HPGA - High Performance Gear Analyzer is a software for static modeling of helical pairs

* HPGA has been ported on a HPC server (Cineca Galileo)

Validation by STE computation

- * The static transmission error is correctly evaluated by the proposed approach (with respect to Calyx)
- The model is capable to represent the effect of profile reliefs and misalignments

Contact pressure and fillet stress

Modelling profile modifications in planetary

Profile modification are introduced in the model

* The model is validated by comparison with a full model (Calyx Planetary2D)

Optimization of profile reliefs

- Optimization parameters:
 - Sun profile reliefs (tip and root)
 - Planet profile reliefs (tip and root)
- Objective function:
 - Peak to peak of the STE of the planetary gear
- * No modifications on ring

Pinion				Gear			
α _{ts} 11 bits	^{mag} t 6 bits	α _{rs} 11 bits	^{mag} r 6 bits	α _{ts} 11 bits	mag _t 6 bits	α _{rs} 11 bits	^{mag} r 6 bits
0110	01						01

Optimal modifications

* Peak to peak of global STE is reduced from 154 μ rad to 21 μ rad (-86%)

Dynamic effect of optimization

* Profile modifications are optimized by means of a genetic algorithm

* The dynamic scenario shows a significant vibration reduction with optimal reliefs

Dynamic effect of optimization

- * The bifurcation diagrams show that instability regions are smaller for optimized gears
- * Instability disappears for the resonance at 6900 Hz

Task 2: A test rig for coatings/treatments on gears

* A test rig for gear pairs (developed thanks to CNH) is presents in Modena

* The test rig has been adapted for testing coatings and treatments

Measured physical quantities

- Torque at pinion/gear, and therefore efficiency
- Fatigue testing (with limited load)

DTE measurement

* The dynamic response of the system can be measured at varying speed

* This approach will be used to test less noisy gears (profile modifications or coatings)

Test sequence

Coatings and treatments are tested on 1:1 spur gears at our lab.

Best treatments will be tested by Bonfiglioli on a complete planetary gear

- * In our test rig efficiency and durability will be investigated
- * In the real application, optimal treatments will be applied to the sun or both to sun and planets

Gear design for testing

- * The test rig has limited torque
- In order to perform pitting tests, 1:1
 gears have been designed using HPGA
 for simulations
- A large crowning is applied

Conclusions

- Within MetAGEAR project, gear design methods previously developed by our lab. have been extensively used for simulation, optimization, as well as for designing experiments
- * A new method for including profile modifications in planetary gear models is proposed and validated
- A new gear pair have been designed for performing tests on new treatments (OR 3)

Programma operativo regionale Fondo europeo di sviluppo regionale

RegioneEmilia-Romagna

May 5th 2017

Gear modelling and optimization; experimental validation

Marco Barbieri, Asma Masoumi, Francesco Pellicano, Matteo Strozzi, Antonio Zippo

Vibration and powertrain lab. Università di Modena e Reggio Emilia - Centro InterMech MO.RE.

